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ABSTRACT

Diffusion Tensor MRI (DT-MRI) provides a statistical
estimate of a symmetric 2

nd
-order diffusion tensor, D, for

each voxel within an imaging volume. We propose a new
normal distribution, p(D) ~ exp(- 1/2 D:A:D), for a tensor
random variable, D. The scalar invariant, D:A:D, is the
contraction of a positive definite symmetric 4

th
-order

precision tensor, A , and D. A formal correspondence is
established between D:A:D and the elastic strain energy
density function in continuum mechanics. We show that
A can then be classified according to different classical
elastic symmetries (i.e., isotropy, transverse isotropy,
orthotropy, planar symmetry, and anisotropy). When A is
an isotropic tensor, an explicit expression for p(D), and
for the distribution of its three eigenvalues, p( 1, 2, 3) ,
are derived, which are confirmed by Monte Carlo
simulations. Sample estimates of A are also obtained
using synthetic DT-MRI data. Estimates of p(D) should
be useful in feature extraction and in classification of
noisy, discrete tensor data.

1. INTRODUCTION

Diffusion Tensor MRI (DT-MRI) [1] (that provides a
measurement of a symmetric 2

nd
-order diffusion tensor of

water, D, for each voxel within an imaging volume),
requires the development of a normal distribution for a
tensor-valued random variable.

Although the multivariate [2] normal distribution
adequately treats vector-valued random variables, the
conventional way to treat a normal random variable that is
a 2

nd
(or higher) order tensor is to write it as a vector

random variable described using a multivariate normal
distribution (e.g., see [3]). However, DT-MRI requires the
determination not only of the distribution and moments
of the individual elements of D, but also of the
distribution and moments of the eigenvalues and
eigenvectors of D (and those of other scalar invariant
quantities derived from D). This information is not
readily available when one writes D as a 6x1-vector [3].

Additionally, writing a tensor as vector obscures many
fundamental intrinsic algebraic relationships among its
elements and its geometric structure. For example,
operations naturally performed on a tensor (e.g.,
expanding it in terms of its eigenvalues and eigenvectors,
projecting it along a particular direction, or applying an

affine transformation to it) all are unwieldy when it is
written as a vector.

Moreover, the theory of multivariate distributions
provides no means to determine the effect of an affine
transformation on the distribution of D, or of the
distribution of its projection (i.e., of an apparent diffusion
constant or ADC) along a particular direction. Finally, the
covariance (or precision) matrix of this multivariate
distribution provides no insight into the physical
processes by which experimental noise or the experimental
design affect the estimate of tensor-derived quantities.

The new tensor-variate normal distribution we propose
preserves the geometric structure, algebraic form, and our
ability to perform various tensor algebraic operations on a
tensor random variable.

2. THEORY

The scalar exponent of a multivariate normal probability
density function (pdf), p(x), is a quadratic form, xT M x, of
an N-dimensional normal random vector, x, and the
precision (or inverse covariance) matrix, M:
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In tensor parlance, xT M x is a scalar contraction–a linear
operation that reduces one or more higher order tensors to
a 0

th
-order tensor (or scalar). In this case, xi Mij xj

1
above

is a scalar contraction of a 2
nd

-order precision tensor
2
, M,

and the 1
st
-order tensor, x, resulting in a linear

combination of quadratic functions that are products of
elements of the vector, x, such as xi xj, and the
corresponding element of M, Mij.

In generalizing the multivariate normal distribution to
a tensor-variate normal distribution, we construct a linear
combination of quadratic terms that are products of the
components of the tensor, D, such as Dij Dmn, and the
corresponding element of a 4

th
-order tensor, A, Aijmn,

D A Dij ijmn mn (2)

Analogously, D A Dij ijmn mn is a scalar contraction of a

4
th
-order tensor, A , and a 2

nd
-order tensor, D. Thus, we

propose a normal distribution for a 2
nd

-order tensor

1
We use the Einstein summation convention in which indices that are

repeated are summed over the range of their allowable values.
2 M is usually referred to as a matrix, but it transforms as a 2

nd
-order

tensor.
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random variable, D, and 4
th
-order precision tensor, A , of

the form:

p D c e
D A Dij ijmn mn

( ) =
1

2 (3)

where c is the normalization constant derived in 2.3.

2.1. Analogies with continuum mechanics

The exponent in Eq. (3) above, - 1/2 D A Dij ijmn mn , has the

same form as the strain energy density (e.g., see [4]) that
appears in elasticity theory to describe the amount of
internal energy stored in deformation. Specifically, there
is a direct analogy between D and the 2

nd
-order strain

tensor, and between A and the 4
th
-order tensor of elastic

coefficients.
Moreover, the 4

th
-order precision tensor, A shares other

properties with the tensor of elastic coefficients. A
possesses symmetries, which leave its value unaltered by
the exchange of certain pairs of indices. For example,
since the product of two elements of the 2

nd
-order tensor

commute, Dij Dmn = Dmn Dij, the corresponding coefficients
of Aijmn should be the same (i.e., Aijmn = Amnij) in the scalar
contraction Dij Aijmn Dmn. Also, since D is symmetric, i.e.,
Dij = Dji and Dmn = Dnm, we require that Aijmn = Ajimn and
Aijmn = Aijnm, respectively. In continuum mechanics, these
symmetries arise because the form of the strain energy
function should not depend upon the coordinate system in
which the components of the strain tensor are measured
(e.g., see [5]). This requirement applies equally to the
statistical distribution of a 2

nd
-order tensor.

Owing to the symmetry conditions stated above, out
of 81 elements of A , at most 21 independent elements
must be specified a priori [5] or estimated.

The theory of elasticity also offers a scheme to classify
the 4

th
-order tensor, A , according to the number, types,

and degrees of symmetries it possesses. The least
symmetric form of A , denoted by anisotropy or
aeolotropy, requires all 21 constants [4]. Other
symmetries include planar symmetry, requiring 13 elastic
coefficients; orthotropy, requiring 9 elastic coefficients;
transverse isotropy, requiring 5 elastic coefficients; and
isotropy, requiring only 2 elastic coefficients. In 2.4, we
analyze in detail the case when A is isotropic.

2.2 Relationship between A and the matrix, M

Another important result from continuum mechanics,
which we also exploit here, is that any 4

th
-order tensor, A,

satisfying the symmetry properties in 2.1, can be mapped
to a 6x6 symmetric tensor (matrix) M containing the same
21 independent coefficients as A (e.g., see [4, 6, 7]). We
use this result to rewrite the scalar

contraction, D A Dij ijmn mn , as a quadratic form, ˜ ˜D M Dr rs s ,

in which the 2
nd

-order symmetric tensor, D, is now

written as 6-d vector ˜ , , , , ,D D D D D D Dxx yy zz xy xz yz

T
= ( )2 2 2 . This

correspondence allows us to construct a 6x6 precision

matrix (tensor) M, directly from a 4
th
-order precision

tensor, A.
This mapping also provides a method to construct a

corresponding multivariate normal distribution directly
from a tensor-variate normal distribution. We can then
exploit the elaborate mathematical machinery developed
for multivariate distributions to calculate the
normalization constant (see Section 2.3), likelihood
function, maximum likelihood estimates of its moments,
etc. of a tensor-variate normal distribution.

2.3 Normalization constant for p(D)

We obtain the normalization constant, c, of the tensor-
variate normal pdf by integrating p(D) from Eq. (3) over
all six independent elements of the symmetric tensor, D,

1
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Here, the tensor dot product ‘:’ denotes the contraction of
the 2

nd
-order tensor and the 4

th
-order precision tensor. The

corresponding precision matrix, M, which contains
elements of the 4

th
-order tensor, A, is given by,

M
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A A A A A A
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T= = (5)

The normalization constant is then readily obtained [8]:

c
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The last expression in Eq. (6) is obtained by writing M as

four 3x3 block matrices, and noting that = T and = T .
Generally, the tensor-variate distribution, p(D), with

precision tensor, A, and mean tensor, D0
, is given by:
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This distribution possesses the form and properties of
a normal distribution. Above, D:A:D is always non-
negative since A is positive semi-definite (having six non-
negative eigenvalues and six real eigentensors [6]). This
ensures that 0 p(D) < 1 

3
. The exponent of p(D) is a

quadratic function of the random variable D. The mean
and precision tensors in Eq. (7) are analogous to the mean
vector and precision matrix of the multivariate
distribution.

2.4 p(D) for a 4th-order isotropic precision tensor, A

3
In continuum mechanics this ensures elastic stability, i.e., stresses

developed always return a sample to its equilibrium configuration [9].
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Here we derive an explicit form of p(D) for the case in
which A is an isotropic 4

th
-order tensor. When A

possesses the symmetries described in 2.1, and also is
isotropic, its most general form is (e.g., see [5, 7]):

Aikpm ik mp im kp ip km= + +( )µ (8)

where µ and are undetermined constants
4
, and im is a

2
nd

-order isotropic tensor.  For A given in Eq. (8), the
exponent of p(D) in Eq. (7) reduces to:

D A D D A D Trace D Trace Dij ijmn mn = = ( ) +: : ( ) ( )µ
2 22 (9)

Since Eq. (9) is a function only of two scalar invariants of
D, i.e. Trace(D) and Trace(D2

), it follows that isotropy of
A implies rotational invariance of p(D) (i.e., p(D) assumes
the same form under any proper rotation of the laboratory
coordinate frame of reference).

To compute properties of p(D), we again write D as a
vector, and write the exponent as a quadratic

form, ˜ ˜D M DT . Then,

M T=

+

+

+
=
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2 0 0 0

2 0 0 0

2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

(10)

Clearly, the diagonal elements of D are mutually
correlated because the block matrix, , is not diagonal.
However, the coupling among the diagonal elements is
independent of their size. Moreover, since =0, the
diagonal elements and off-diagonal elements of D are
uncorrelated. Finally, the off-diagonal elements of D are
themselves independently distributed since =µ I (where

I is the identity tensor). Thus, p(D) simplifies to:

p D p D D D p D p D p Dxx yy zz xy xz yz( ) = ( , , ) ( ) ( ) ( ) (11)
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One substantive difference between tensor-variate and
multivariate normal distributions is the way in which
their covariance structures are characterized. Although A is
an isotropic precision tensor, M in Eq. (10) is clearly not
an isotropic precision matrix (or tensor). In fact, M is not
even diagonal. Only for =0, when all elements of D are
independently distributed, is M a diagonal matrix. Even
then, M is still not isotropic. Thus, even for an isotropic

4
and µ are the Lamé constant and shear modulus, respectively [9].

4
th
-order precision tensor the relationship between the

tensor-variate and multivariate normal distributions is not
trivial. Clearly, A represents a new covariance structure.

2.5 Distribution of eigenvalues of D, p( 1, 2, 3), for a
4th-order isotropic precision tensor, A

For a 4
th
-order isotropic precision tensor, A, we can obtain

p ( 1, 2, 3), the joint pdf of the three eigenvalues of D,
directly from Eq. (9) by substituting Trace D( ) = + +1 2 3

and Trace D 2
1
2

2
2

3
2( ) = + + and collecting terms:
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The covariance matrix of p( 1, 2, 3) depends only on
µ and . While the eigenvalues are correlated, their
coupling is independent of how they are ordered;

permuting them leaves p ( 1, 2, 3) unchanged. This
follows from the fact that the scalar invariants of D,
Trace(D2

) and Trace(D)
2
, are inherently insensitive to how

the eigenvalues are assigned.
We then uncorrelate or whiten p( 1, 2, 3) by

diagonalizing the precision matrix [8] in Eq. (13). The
covariance matrix for this new distribution is:

=

+

=

1

2 3
0 0

0
1

2
0

0 0
1

2

0 0

0 0

0 0

2

2

2

µ

µ

µ

T

S

S

(14)

2.6 Monte Carlo simulations of p( 1, 2, 3) for the
isotropic tensor, A.

Figure 1. 300 points from MC simulations of 2nd-order

tensor, D, with ( 1, 2, 3) = (1200, 700, 200), typical of brain

white matter. The precision of MC estimates was 0.2%.

In Figure 1, we plot Monte Carlo (MC) estimates of T

and S against their theoretical values obtained from Eq.

(14). First, MC estimates of D are generated from the
multivariate normal distribution with precision matrix
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given Eq. (10). Then, the empirical distribution,

p( 1, 2, 3), is computed using these D. Agreement is
excellent. Values of µ and are chosen randomly but so
that the distributions of distinct eigenvalues do not
overlap to avoid a known “sorting” bias that would

produce erroneous estimates of T and S .

2.7 Estimating A from simulated DT-MR experiments

MC simulations were also performed to generate A from
diffusion tensors, D, typical of those measured in human
brain with DT-MRI. Using experimental parameters
provided in [10], we synthesize DT-MR data using MC
methods as described in [11]. From the empirically
estimated D values, we obtained sample estimates of A
for a putative gray matter region. Figure 2 shows A
displayed as a 6x6 matrix with coefficients organized as in
Eq. (5).

Classifying the symmetries of these estimated 4
th
-order

tensors is assessed using an eigenvalue-eigentensor
decomposition. For an isotropic D tensor corresponding
to brain gray matter, the symmetry shown in Figure 2 is
characterized by only three independent parameters. This
makes the estimated A only slightly more complicated
than the 2-parameter isotropic model considered above,
but less complicated than the 5-parameter transverse
isotropic model. A hypothesis that we are currently
testing is that one objective of an optimal experimental
design is to make A closest to being isotropic.

56 7 7 0 0 0

7 56 7 0 0 0

7 7 56 0 0 0

0 0 0 49 0 0

0 0 0 0 49 0

0 0 0 0 0 49

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

=

a c c

c a c

c c a

b

b

b

Figure 2. Elements of A (as organized in Eq. (5)) estimated
from MC simulations of D using gray matter parameters

( 1, 2, 3) = (700, 700, 700) at SNR = 10. The general form of
A is given using the three parameters a, b, and c, above.

3. DISCUSSION

This new tensor-variate distribution should improve our
estimates of D and quantities derived from it in DT-MRI
[12, 13], and lead to the development of new hypothesis
tests to analyze DT-MRI data as well as to improvements
in experimental design.

New methods are being developed to measure other
tensor quantities, such as rotational or spin-diffusion
tensors, and tensors of elastic coefficients [14]. Tensors
that characterize charge, mass, momentum, and energy
transport are also of great importance in material sciences,
physics, and medicine. In addition to the translational
diffusion tensor measured by DT-MRI, these include the
dispersion, electrical conductivity, thermal conductivity,
and hydraulic permeability tensors. These quantities may

conform to a normal tensor-variate distribution, especially
if measured using regression methods (e.g., as in [15]).

4. CONCLUDING REMARKS

The use of a scalar contraction of 4
th
- and 2

nd
-order tensors

in the exponent of a normal distribution appears to be a
novel development in the theory of statistical
distributions, and significantly extends the scope and
range of applicability of the normal distribution to
accommodate higher dimensional data structures.

Using a 4
th
-order tensor to characterize the covariance

structure of the tensor-variate distribution preserves the
form of the tensor random variable, and our ability to
perform admissible algebraic operations on it. It also
provides a way to assess the type and degrees of
symmetry in the correlations between components of the
random tensor, obscured when these components are
described by a multivariate normal distribution.
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